domingo, 22 de noviembre de 2009

LA PARABOLA
























En matemática, la parábola es una sección cónica generada al cortar un cono recto con un plano paralelo a la directriz
Se define también como el lugar geométrico de los puntos que equidistan de una recta (eje o directriz) y un punto fijo llamado foco.

La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo la influencia de la gravedad.
De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio)






Lado recto



















El lado recto mide 4 veces la distancia focal
Al segmento de recta comprendido por la parábola, que pasa por el foco y es paralelo a la directriz, se le conoce como lado recto.
La longitud del lado recto es siempre 4 veces la distancia focal.





Semejanza de todas las parábolas
Todas las parábolas son similares, es únicamente la escala la que crea la apariencia de que tienen formas diferentes.
Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad e = 1. La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.








Tangentes a la parábola


La tangente bisecta el ángulo entre el foco, el punto de tangencia y su proyección.
Un resultado importante en relación a las tangentes de una parábola establece:
La tangente biseca el ángulo entre el foco, el punto de tangencia y su proyección.

No hay comentarios:

Publicar un comentario en la entrada